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ABSTRACT .

Schiff has conjectured that the Weak Equivalence Principle

("WEP": free-fall ﬁrajectories independent of test-body composi-

tion) impiies the Einstein Equivalence Principle ("EEP”: all

nongravitational laws of phy31cs the same in every freely falllng

frame). This paper presents a proof of Schiff's conJecture,

restricted to: (i) test bodies made of electromagnetlcally inter-

acting point partlcles, that fall from rest in a statlc, spheri-

cally symmetrlc grav1tat10na1 field; (11) theories of gravity

within a certain broad class — a class that includes almost all
complete relativistic theories that we have found in the litera-

ture, but with each theory truncated to contain only point par-

ticles plus electromagnetic and gravitatidnal fields. The proof

shows that every "nonmetric' theory in the class (every theor
‘ y

that violates EEP) must violate WEP. ' A formula is derived for
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the magnitude of the violation. Comparison with the results of
Eotvos-chke type experiments rules out various nonmetric theories,
including those of Belinfante "and Swihart and Naida and Capella,
— theories that previously were believed to agree with all cur-
rent experiments. It is shown that WEP is a éowerful theoreti-
cal and experimental tool for constraining fhe manner in which

gravity couples to electromagnetism in gravitation theories.
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I. INTRODUCTION

Ih a previodé paper1>we havé discussed the content and sighificéncg
hof'Schiff's Conjecturé,' In brief, the Conjectufe states that all theories
of gravity which safisfy the Weak Equivalence ]E;rinciple'1 (WEP), i.e., pre-
d1ct a unique comp031t10n-1ndependent traJectory for any test body at a
given point of spacetlme and with a given 1n1t1a1 velocity through that
p01nt must satlsfy the Einstein Equ1va1ence Principle (EEP), i.e., must
show that the nongravitatlonaI; laws of physics are the same in every freely
falling'ffame.' When specialized to ”relativistic theories of'grav1ty 1 (as
will bé done throughouhlthis éaher), Schiff's Conjecture sa&s thaf every
theory satisfying WEP is neceésarily a fmetric theory."1 Plausibility
argumeﬁts (e.g., Réfs.'i and 2)'have freéuently beén givén for the Conjec-
ture, but there have been few detailed‘calculations that_bearAupbn its
validity or invalidity. N

_ A particular method of attack-— perhaps the only workable method for
eXplicit calculations-— is to attempt a proof of the Conjecture piece by
p1ece- that is, flrst analyze test bodies with purely electromagnetic
1nternal 1nteractions and thereby attempt to show that particles and elec-
tromagnetism must interact with gravity in the manner of metric’ theories _'
(EEP) in order that WE? be satisfied; next'analyze purely nuclear systems
and attempt to show that nuclear fields must couple to gravity metricélly,
‘bétc. cee o Unfofthnately,.fof our purposes, nuclear interactions have not
been given.an adequafe.mathematical representation even in the absence of
gfavity; and the'nonmetric.theories known to us make no attempt to write
down nhﬁlear force laws. Hence our present program must end one way or

. anothef after the first stage. A proof of the first stage is still quite



Significant,vhowever. It will allow us to rule out various nonmétric theories
in the.literature.

In order not'to prejudice ourselves, the language and concepts uged‘in |
the calculation will be those employed in standard ciassical fiéld fheéry'
with gfavity treated as just another ordinary field. 1In particular, we will
not use such phrases as "curved spacetime' and will not make any coordinate
transformations to real or pseudo-"freely fa111ng frames." The concept of
grévity as a metric phenomenon should be forced upon us by WEP.

As spelled.out in Sec. II, we shall take a nonquantum mechanical approach
and shallvuse é:partiéle ratﬁef-than a fluid picture for the test body.

Since the grévitation theories with which.we<attemptyto tié fﬁ aré lafgely
:classiCal théoriés, we feel that a classical aﬁproach is completely jQSti-
fied éﬁd perhaps eSséntial; There are fwo reasons Qﬁy a particle:approach
haslbeeﬁ taken: first, more oftén than not, classicél_fiéld théories formu-
late the interaction‘of gravity with matter in the form of point particles;

~ second, a charged parﬁiclevapproach allows one to dgal with theygxact ”gravi-
tatibnally modified Maxwell equétioﬂs“ of a given théory; rather than with
their smeared ouﬁvavérages.

Our calculatioﬁ‘is not the first of its type. For several particular
' théoriés, and at lower orders Qf approximation, thé acceleration of electro-
magnetic test bodies in a‘gravitatipnal field has been previously calculated.
Nordtvedt3 and Belinfante énd Swiharfh have both done calculations, to first
order in ﬁhe gravitational field potentialvand équared particle velocitiés;
ﬁordtveat‘fof-general.metric théories, and Belinfante and Swihart for their
theory of gravity. Iﬁ addition, Post> has doné algalculation, at Post-v

Newtonian order, of the acceleration of a confinedvquantity'of electromagnetic



energy in a gravitational.fieid. Had his caluulation been carried to higher
order it is conCeivablé he.could have obtained part of our result:;that
€ - p [ef. Eci. (_21)], ‘
‘Section II of this paper_givesvan outline of the assumptions, procedure,
and techuiques of our calculation, including the results; Sec. IIi préSents
the details. Section IV compares the predictions for WEP violation~witu the
resultu of EBtvSé-Dicke type éxpériments, and thereby rules out the non-
metric theories of Belinfante and Swihart,h’s'_Capella,7 Naida,8 and Whitehead.9
Alsp'discussed is the manner —;both_quautitative and qualitative!— in which

WEP is an experimental probe of the 'gravitational-Maxwell equationms," as
P P q s

contrasted to previously recognized experimental tests of those equations.

ITI. GENERAL FRAMEWORK AND RESULTS

In calculating the centet of mass acceleration of an electromagnetlc
test body, we would like to set up a formalism which includes as many types
of gravitation theories as péssible,'but which is not too complicated. In ‘
particular, our formaliém should be able to deal with scalar, veétor, tensor,
scalar-tensor, etc. theories.

We ‘have found that all of these dlfferent typés of theories can be put
into a somewhat un1versa1 form when describing a static, spherically sym-
metric (SSS) grav1tat10na1 field —-prov1ding their dynam1ca1 law® for particle
motion is derlvable from a Lagtanglan. (The restriction to $SS fields is
cettaiuly_a 1imitation.in principle, but it allows us to handle many dif-
férent theories at once; and, as discussed in Sec. IV,fis not a limitation
in‘bractite;) The quasiunivergal description of patticles and eiectromagne-

tism in an SSS field is as follows:



~ The motion -of charged particles under the joint action of gravity and

: ' 10
the electromagnetic field A can be derived from the Lagrangian

= I J'l m (T - Hy 2)1/2‘+ e Au vké]dt_ _ | © (1)

g where we. have used the bar above the L to indicate that L may be only a part
of the total Lagranglan, and where the various symbols will be defined below.
The "gravxtatlonally mod1f1ed Maxwell equatlons" (GMM: Maxwell's equations

~in the presence of a gravitational field) are of the form

) g (eB) = b | @

¥

g x (W) = bxg + 5/at('e§)‘ - L (3)

vDefinitions of the quantities in Egs. (1)-(3) and of other quantities that

will be used in ehe calculation are given below:

xl = 5patial coordinates; they are nearly Ceptesian ﬁhen gravity
is weak;

t = a time coord{nete associated with the staﬁie nature of the

SSS field, nearly equal to proper.time for slowly moving

particlesbwhen gravity is weak,

8
"

rest mass of particle k, a constant,

charge of particle k, a constant,

o
Wi

xk&(t) = world line of particle k,

B oo M
v = A%y /dt,
XO =t

<
1

B S
Vi aij Vi Vk with Sij the 3-Kronecker delta,

= a gravitational potential equal to Ms/r, where MS is a con-

(==
—~
a3
~
1t

stant ("active gravitational mass?) characterizing the source



of the SSS field and r is coordlnate dlstance »
[ (x - xs) + (y - ys) + (z -z )]1/2, from source of field’

point,

ng'- = the usual differential operators of gravity free Euclidean

space,

YU = the gravitational acceleration to be expected if the

i
Nl

‘theory in questlon ‘'were Newtonlan theory,.
T,Hye,u = functions of the grav1tat10nal potent1a1 U; functlons that
‘are arbitrary in this calculation but that have a.spec1f1c
form in each theory of gravity when the coordinate system
has been suitably spec1fied,.k
AM = components of an electromagnetic vechor potential, a four-
vector, | | |

0oy o i o e o | .
()" = A, = spatial part of vector potential,

f
CPE-AO .
bo o e 5) o
EEERN CEENO) - (k)
§s~0-aé/at 4 o (ke)
BEYXA - | | ()

Although in most theories the form of L in Eq. (1) is typical only of
SSS fields, it,turns out that all of the results we shall obtain hold even
if U is an arbltrary, but time . independent function of position.

For an SSS field in a given theory, T, H, e, and p will be partlcular

functlons of U (an hence of p031t10n) Here we assume that T, H, ¢, and jp

have been given and we seek the relations among them, if any, that are’



requlred for compliance with WEP. It is clear from Eq. (1) that we have

sacrificed general covariance of the particle Lagrangian in order to encom-
pass a wide range of theories.
Note that Eqs. (2)-(3) can be re-interpreted (different physics;‘same
" mathematical tepresentatioﬁ!) as the_usoal Maxwell equations for a permeable -
medium in ﬁhich_the free sources originate from charged particles labeled
by k. Thus ¢ and pn play the role of "gravitationally induced dielectric and
permeability'pafametere," respectively. We require that T, h, €, W all
appfoach 1 as U vanishes so that the special'felativiatic liﬁit is malntained.
Given the SSS restriction, one may ask how general.are‘Eqs. (1)-(3).
Except in the most general (mommetric) case of Jordan's theory,1¥ whlch is
incompletel ln the sense that itoinvolves onspecified processesiof particle
creation, all theoties we know ofrohich are.complete‘enoogh tvaotmulate
the interactlon of.the electromagnetlc field with graV1ty have GMM equatlons
of the form of Egs. (2) (3) In fact, the "c-p formulation" of the source-
less Maxwell eqdations in metric theories has sometimes beeh used in calcu-
lations.13 'Ihe particle Lagrangian'f [cf. Eq. (l)j also appearsrto be
faitly:general, except for‘a class of theories disoussed by Naida8 which
ihcludes the theory of Capella.? We treat the Capella-Naida theory‘on an
‘1ndividua1 basis in Sec. IV, using the methods developed in this section.,
We p01nt out that it is sometimes necessary to perform a reformulat1on
(same theory; new "mathematical representation”) of a theory in order to
put it into the torm of Egs. (1)-(3) (see, for example;_the Belinfante-
Swihart theory as analyzed in Ref. 14). Finally, we should emphasize that,
even more important than the generality of Eqs. (1)- (3), are the techniques’
and methods developed in this section, since they can also be applled on an -

individual basis to that handful of theorles whlch is not included in



Eqs. (1)-(3). We now proceed with an outline of our calculations.
Variation qf Eq. (1)'yie1ds an expression for the acceleration of the
K particle, which, together with Eqs. (2) and (3) constitutes three
coupled equations.. We seek a pe:turbation solution. There are two obvious,
small'dimensionless quantities in which one could expand: the gravitational
potgntial ﬁ and:the squared particle velocities Yk2~ Since we pféfgr é |
result correct to all orders in the gravitatidnal potehtial, we exﬁénd only
in gkz and leave.T, ﬁ; €, and p as arbitrary'functioﬁs of U. We dd, ﬁdwever,
exﬁaﬁd these latﬁer functions in a Taylor seriés about the instantaneous

center of mass of the test body (defined below), i.e.,

T = TO + (g . E)TO' +oeee 50 - (5)
where '
T = 4T/dU  and T' = (ar/fdv)  _ o - (8)

.We shall assume that the»body is small enough so that second derivgtes
of U make negligible contribﬁtions; Indeed, this is part of the definition
of "tesﬁ bodyﬁ:(Ref.,l) and is a necessary andlintegral qualification in
Schiff's Conjecture. |

We define the center of mass for fhe test body by the following

sequence of equations:

m =  Okll +>‘F[U(§k)]} + %mOkyke'l + 6[U(x,)]

1 | -1}, . ' i :
+5 e 1%L +‘K[U(>~<i)] + S[_U(zck)]l + O(mv") (1)
’.Eik = ?51 - }'Sk ’
M=zm o, (8)
_ .1
~cm MoILmE - (9)



_Here F, G, K S are again arﬁitrary functions-of‘the potential U. (When-‘
ever two indicies; e.g.; i.and k, occur in térms, in double orvsiqgle sums,
it is always assumed that i # k in the sum.) Any credible result sho?ld be
independent'of the particular definition of the center of mass as long as
it remains inside of the body, that is, the result.should not depgnd on the
specific-forms of the functions F, G, K, and S. |

We now assume that at t = O, the center of mass of the test body is

momentarily at rest, at the origin of the coordinate system,

(i(cm)t=0 = (}:Scm>t=0 =0 . | .I : (10)

By differentiating Eq. (9) twice and combining with Egs. (10), we obtain

for the instantaneous center of mass acceleration

.o _1 .o . '
Eon = M (5% + Zdy « 2o ] (11)
where
2 = ¢!k/dt

B

= dmk/dt , etc. .
'Return for a moment to the details of the expansion scheme. Our
expansion is in the quantity

2 2

- v° £ (typical squared particle velocity) 2 Ve . (12a)
The virial theorem guarantees that
- ) 2
. . e
Ve ~ (typical charge of a particle) s k
~Ttypical mass) (typical separation of neighboring particles) ~ mk]x,kl

Thus, without serious error, we may treat both terms on the right-hand sides

of Eqs. (12a) and (12b) as 0(v2) when ordering the terms in the éxpansiqn.

. (12v)



Besides the dimensionless quantity v2 in which we gg_expand,.and the
dimensionless quantity U in which we do not expand, there is a third, less

obvious dimensionless quantityf
gs = lg| + (size of test body) 2 |g| |§k| . : (13)

We shall expand in thié quantity-—-independentlj of the v2'expénsion — but,
in practice, by eknmining powers of g rather than gs.

Now, if gcm.is to be body independent in general, it must bé éo'for
each order in v2 and each order in g, independently. _Surprisingly, perhaps,
it will be sufficient to work tb first order in v2 and to first order in g.
The imposition of WEP at this order will force the dynémical equationn (1)-

(3) to take on metric form, thereby guaranteeing that EEP (and hence WEP

a fortiorl) is satlsfled at all orders!

To first order in v® and g, after solving Egs. (1)-(3) for a, and

substitution into Eq. (11), we find (details given in next section)

TR N I o3 | I I | o2 = ‘
Xem= =3 8(T" Hy ) + g% [2“{0 By ) ZyoyVy * 0 Ty, k"ikJ
—1_ . _1 . . . .
+ My | W Zi,k Wiy + My 0Ty mOi(§ - v )vl , : (14)
where ' '

Mg = Emes s - . : - (15a)
= _ o lf2 -1y, =2 1o, gl .
n = (T, Ty VG Sg'e v Tk ) (15b)
—_1,.1/2.:-1y.1 -1 14 -1 -1 vy =1 -1
0= ST G T Hy My + 5 Tp' Ty €g - Ho'Hy g )

- 1/2, -1 -1 _ 1 0 1/2y -2 -1 |
+ (1 + FQ) [FO Ty o o - 2(1 + G )TO o Ho €0 ] > (15c)
o=t 't _mrnti21+F ) HE -—(1+G )T iand (15d)
o o 0 0 0 o "2 0’0o o | ’
..nik-E e eklxik' , (15e)



k = e.e (g - x, |x1k‘ Xk © ' .(15f)

. Equation (lhj becomes mueh'simplified when we use some gravitationally modi-

fied-virialsreiations (see Sec. III.C for details):

1, 1/2
<21mo v+ 5T, Ho ) 21, k15" 1k ik |= k‘ - O(M v'gs) (16)

where m, p refer to components of the approprlate vectors and < > denotes

. the usual time average. U31ng Eq. (16) Eq. (lh) ‘becomes

1 g1y |1 1/2 | -1
<~cm> -5 8(T'Hy ) - g M o <T )(H - 25'¢q
. -1y
- To"‘:o“oHo ) &y

1 1/2, -2, -1 -1 | | |
- E'Mo 'To 2“ BTy - <obo)idiw’ © (17)

The first term of this acceleration is body independent (satisfies WEP);
the second term depends on the body's self-electromagnetic energy; the th1rd
term depends on the electromagnetic energy,_the shape of the body, and the
korientation ef the body with respect to the,gravitational field gradient.

.;Tﬁus <Zc;> will always be body independent only if the second ahd third terms
always vanish, i.e., ' | _
By' /Mg - 2, feg = To'gto/fo = 0 " (18a)

.HO/TO - egig = O ; | | (18b)

(the other factors in the body dependent terms must be nonzero for correct.
INewtoniaﬁ and special relativistic limits) or equivalently,

gol/eo =-%(g0'/ﬂo - Tov/TO) | | | (19a)

it

Hb/(TbeO . R (19b)

Ho

10



‘Since we have not specified the initial location of our test body with
respect fo'the external gravitating source, and Egs. (19) should be satis-
fied at any point we choose to deposit the body, the naught subscript can

be removed from quantities in those equations, yielding, upon integration,

m
|

_cwmt?  (20a)

-1, ,,1/2 o '

p = C- (H/T) /2, , (20b)
where C is a constant. 'Since, "in the absence of gravity,"'1 we must have
e =H=T=1, C must also be ﬁnity. Therefore we finally obtain, as a

necessary condition for our electromagnetic test body to fall with a com-

position-independent acceleration:
, _ s

e = p = (H/T) 2 | (21) |

it is worth noting that, using heuristic arguments (see e.g., Ref. 15)

about the electromagnetic energy content of atoms and the expression for

the fine structure "constant" Q in a dielectric medium
‘ 1/2 2
o= (w2 B/(en)
one can see why WEP should require constancy of the ratio (e¢/u).
Compérison of Eqs. (21) and (1)-(3) with the discussion in Sec. III.E
' reveals that Eq;_(21) is a necessary and sufficient condition for the

dynamical eqﬁations (1)-(3) to take on the familiar metric form

——— _ . u N ’ :
L=75, f [ Moy dSy + gkAudxk ] | (22)
R 1 L (23)
- B _ ,
In this metric form
ds2 = gadeade ;o -,v . (2ka)

11



800 = (24b)

g, . = - 5in (spherical coordinates turn out to be ";sotropic"), (2&c)

; denOtes‘the covariant derivate with respect to gaB 5

0B _ ot fu o . T (oba
F g 8" (Au’,r’. Aw) s | (2kd)

5~ = i I’ek§h[x - z(s)](dxﬁx/ds)(-_g)—1/2 ds, .- | - (2ke)

Note that all dependence on the arbitrary functions used in the center
of mass deflnition, Eq. (7)), has vanished by the time one reaches Eq. (17).

Higher order calculations [vh or (gs) , for example] could only yield .

results consistent with Eq. (21), since WEP at first order implies that

gravity has a metric theory description (automatically satisfying WEP) to
all orders. | |

Our theoretical results can be summarized by the following theorem:
Theorem: Consider the class of gravitation theor1es that possesses a mathe—
matical representation of the form of Egs. (1)-(_)._ For»that class, with

each theory written in that representation,

the theory is metric with the metric
(WEP)¢=¢(Eq 21) [ given by Egs. (24b)-(2ke) ]

ITI. DETAILS OF THE CALCULATION

A. Single Particle Equations of Motion

Variation of Eq. (1) with respect to the coordinates of particle k
yields
(25)

W

‘- ) - ) . ) 2
(W l)gk + v, (W 1)/dt + -;- W 19(1: - Bv,”) = L.A.(x

12



where

W= (T- Hvk2)1/2- , _ (26a)

a
t}g
o~
N
j —
1

= Lorentz acceleration of particle k

A(’ek/mOk) [— veo(x, ) + Y(zk . é(gk)> - d/dt é(gk)], (26b)

and all functions of U are evaluated on the particle's world line, e.g.,
H= H{U[xk(t)]}. Using Eqs. (5)-(8) and the discussion following Egs. (13),

we can write, to the order of our calculation, -

~

VH = Hy'g etc. (27)

We shall regard g as spatially constant [ see discussion following Eq. (6)].
Equation  (25) can then be written as
. l ' 2 | o -1 . ' -1 1 v. 2 3 -2
aj = 5 8(Hy'v - _To,)Ho - (Y g)[Ho By - 3(T' - v By

, -2 -1 | ;
) - Yk(l’k . 3k)nw + (WH™T)L.A. . (28)

Note that whenever functions like H, T, ¢, etc. occur in terms multiplied By

g, we may evaluate them at naught, i.e.,

Hg > He
becadse»we wdrk iny to first order in g.

We further expand W in.a power series in v2 and, since we are only
working to 0(v2), we can set W = T1/2 in Eq. (28). This follows from the
‘fact that L.A. ~ O(v2) and from the explicit velocity dependence of other
terms in Eq._(28). [It should be mentiéned that when a term is cénsidered
0(v2), it is not necessafily intended thét-the term is dimensionless, but

only that v2 (or the expression in Eq(12b)) is a multiplicative factor in

the term. The same applies to the notation 0(g).]

13



By dotting Yk into both sides of Eq. (28), solving for (gk --gk), and

_subgtituting the result back into Eq. (28), we obtain
_l gy @ 'y -1 . o -1 S T V- |
2, =5 8lHy v = TR+ vy e g) (TN - BTy ) ¢ (TR JL.A-

+ o(vh) + 0(g2) . | O (29)

B. The Gravitationally Modified Maxwell Equations

We must now solve Maxwell's equations and compute the quantity L.A.
which occurs in Eq. (29). If Eqs. (4c) and (4d) are substituted into

Eqs. (2) and (3) and one uses the gauge

(en) dp/ot +y -+ A=0 - (30)
- the result is
V2¢'= eu82¢/6t2 — hpe ™! - e-IYE - (Ve + aé/at)',‘ (31a)

Ph = endPafor® - hmg v (@) (g A) wew) + g XA x @ - (310)

We_cén now do a pérturbation solution of these equations by expanding simul-

taneously in ?owers of v2 and g, treating formally v2 ~ g

P =9 R S T Foeee . _ (323)
| é=éo+‘§1+‘i‘2+:“- , - ~ (32b)
V2‘~°o - bl - | o (33a)

2 2 2 -1, .‘ :
Vo, = en(d wl/at ) - €5 €Oi[§ : (Y¢1 + Bél/at)] etc. , (33¢) -
YEAO = - kmJ , A | o (3ka)

2 2 2 -1 ' L2 ‘
TA, = en(3B/3tT) + (en)y (T + Ag)V(en) + ny ug' (Y X As) x g etc. (34b)

1



(One should not confuse the perturbation order of A, ék,'with the kth com~ .
ﬁonent of the veétor'Ak.)

The solution of these equations is far simpler if we remember from the
beginning - that since the ‘particle acceleration is required only to O(v )
and 0(g) we need L.A. only to the same order. ' Remember also that
a, - O(ve) + 0(g) whenever the solution of Eqs. (33)-(34) requires a particle
acceleration as a source term (right-hand side of equations).

We solve the eqﬁations for A first. Clearly, from the expressidn for
J [cf. Eq. (ka)],

-1

Equation (35) gives the lowest order'vector»potential at pafticle k due to
all other particles (i # k). Note that p(x ) is considered to be a constant
with respect to the del-Ambertian operator acting on funct;ons of x, . The

above A can produce terms of the desired order .in L.A. For example,

, ‘ 1 -
ekd/dt Ao(xk) = %, ese, giu(gi)|§ki| + e (36a)
. 1 B
=% e;e g“(fi)lfkil + e (36b)

where we have substituted a, = g + o(v2) + O(ge). The indicated term in
(36b) is bilinear in v° and g is therefore acceptable. However it can
'be shown that no higher érders_of A after A, can contribute. For example,
the second source term onfthe right-hand side.of Eq. (34b) makes the contribu-
‘tion, | | |
. Ay~ 0(8) - Ay~ 0(g) O)
L.A, ~ dél/dit 4\3(2 . ‘51) = O(g‘vh)_ + 0(g2v2

From the expression for p [cf. Eq.‘(hb)], we can write down the lowest

15



order solutionefor the scalar electromagnetic_petentialz
. -1 |
0 (%) = 4 (x, )|xk11 . (37) .

The source term proportional to aéo/at.in Eq. (33b) doesn't contribute to

our order of calculation. Now, define a "superpotential™ ) by the equation
2. - | -
VKX =gy , | (38)

Using ¥ we can write Eq. (33b) as, fo appropriate order,

Po, = Plendx/a?) - aglen) - v(3%/ot%) - FPleg e (g - 01 - (39)

Using Eqs. (37) and (38), we obtain

) =3 e () lmg | .' | (10a)

1. N T | ’ -2 \
nxfat = - 5 5,e, (v, 0 %) d (51)‘§ki! nee (g - Yi? ¢ (fi)eo %, ;| (kOb)

Pufor? = - Lz e(a - xy) a0 (800

where we have carefully interpreted the partlal time derivatlve on functions
of X, as acting on coordinates of particles 1abe1ed i with 1 % k. From
(hOc) it is clear that the second source term in Eq. (39) does not con-

tribute and the remalning equation is tr1v1a11y 1ntegrated to yield
- 2. 3,2 -1 . o
gy = ewd X/t - ey €' (870 W) - | (41)

Using Eqs. (40a) and (40c), Eg. (41) becomes

1 : 101 -2, N -1 :
= -3 M By o3y x5l - S0 0T8T H) Xl (42)
and, using Eq. (29) for a, ' ' ‘
' ~L
ol g =11 -2, _ L -1 ' ‘
o = (5 To'Mofo "3 %0 o ) Bpegle s mdlmgl™ - (13)



In the same manner as with the vector potential, one can show that
Vo Ps etc. do not contribute to the Lorentz acceleration at the desired

order. Using Eqs. (26b), (35), (37), (43), ome obtains
-1 -3 - -1
E A (x,) = (e /my k ki€ (2 1% 177 - ag(x) |3 | )e;] |
1{1 .., -1 -2, S |
* 2(2 To oHo " o €o‘) Zi[eki,- (ep/moy) €;81% | ], (k)

where w, . is as defined in Eq. (15f). From Egs. (29) and (6) we obtain the

_ ~ki
relations A :
= -]; ] -1 2 . .
a; = - 2(TO Hy ) g + o(v™) | (45a)
() =eg+ (g x)ep' > - (hsb)

which, when substituted into Eq. (44), yield

-1 -2
e, (g xR

e e (e -26 ! 1 'u H -1>
_ 3 Xki€o 0 '8 1\%0 % '3 To oo
L.A. (x,) = zi(eiek/ )[ - +5

3
‘~ki| %5 |

1(_1_ -1 -2, )M
5\ To uo o ~ € “o ikt

C. Virial Conditions

We now have enough information to derive some useful virial conditions.

Substitution of the expression for L.A. [cf. Eq. (46)] into Eq. (29) reveals

(2 = o 2Ho_ €0 i°

L

where p denotes a particular vector component. Multiplicatioh of both sides

e ) g0 . )

of Eq. (47) with (xk)z-yields

- L p_ P 2 1/2 -1 -1 p L !
Pok*k Fk T " Vi /A - myyy P = 1 e me e ()P X

17
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If we sum Eq. (he) over the index k, use the antisymmetry of §ki,.and take
a time average, the result is Eq. (16). Summing Eq. (16) on £ and p produces

another‘useful virial relation:

<Zk or¥ k2 + }é Tol/zﬂo-leo-1 i 1%4® 1 Xl N-o+og) . (49)

D. Center of Mass Acceleration .

We now have all of the necessary tools at our disposal. for calculéting

the test body acceleration. We begin with Eq. (7). To the required order

oy = mOk[Fof(g Tyl v +-.G)‘(3k g é v Go' (8 - Vk)]‘.

3 ek[“o'(é Yy + S, '(5 Y
- (K(-l‘i)f' () (_’f_ik‘ )|"ik‘ ]'xikl - - (50)

mk = mOk[Fo'(i% cay) + (2 "3k)(1 + G)] : | (51)

In obtaining Eqs. (50)-(51) we have, as before, used the fact that

.ék ~ o(g) +1O(v2). To be exac;z'Eqs. (29) and (46) show that

S R | 1/2, -1 -1 | -3 2 '
gk.? -3 §(TO HOA ) + Ty ' "By € .Zi(eiek/mok) §ki|§ki! +'O(gv ) . (52)

Using Egs. (50)-(52), the first two terms in the expreésibn for gcm

fcf. Eq. (11)]'becom¢

_ 11 -1 1/2]. , -1 o

Mln g = 5 Ho € To [Fo - “*G ) To 0 ]Zi,k‘:’ki (532)

o ls g x =2M-1.F'-1(1¥G)T'H’12m (v, * 8) v |  (53b)
Kk k o ~ 2t *%’ Tofo 2o’k B Tk o

Again using Egs. (29) and (hs) to get the O(gv ) contribution to a,

18



[cf. Eq; (52)], the third and last term contributing to gcm is

-~

1 -1

wlzma =g _-%MO T (1 + FO)HO'1 .+% HO-I‘HO'(I + Fo)
-3 T )]Zk k¥ k?*% 171, Wik
+ (1 + F )( Ty 1_- HO'HO ) M Z mok(v . §) Ve
+é M 121 Wik | o  (sh)
where - ,
T = 1/2H 1(1 + F )(e e ' é Ty uOHO-l) --% TO'HO_1(1,+ Ko‘f SO) k558)~
Tp = Tol/?ﬂo-l[<1 + Fo)Hoil(% To'pd - 50-1Ho')' * eo-—lFo" |
+%(1 + FO) eo'lTo'ITO'] ,' | o | (55b)
with M, nﬂ;: (gﬂ; defined 1n Eqs. (15).

Now, expand the expression for i using Eqs. (7) and (8):

(1+¢0) (1 + Ky +Sy)

-1 -1, 1 2 1
M= My (14 Fp) [1‘2M(1+F§Zk0kk BERENEEN) i,knik]

+ 0(v") + 0(g) . | | o (56)
' With Eqs. (53)-(56), the expression for X , Eg. (11), becomes that given
in Eq. (14). Use of Eqs. (16) and (49) then yields Eq. (17), and subse-
quently Eq. (21).
E. Thé "e - ' Formulation for Metric Theories

In any static, spherically symmetric,_locally Lorentz manifold with

metric, one can 1ntroduce “"gpatially isotropic coordinates,” for which
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800 = Bool®) 7 | - (57a)
=0, | _ (57b)
g. PR Sij f(r) ’

r = [(kl - #81)2 + (x2 - xse) + (x3 - x83)2]1/2' . (57¢)

(For proof, see any standard textbook on general relativity.) 'For the
problem at hand we can regard 800 and f as functions of U = Ms/r rather
than as functions of r. In such a coordinate system, the standard metric-

theory Lagrangian ‘for the.mo_tion‘of charged particles reduces to
_ o a, Byl/2 "
zk[- ok f (8l % )T+ ey IAudxk]

) | 2,1/2 n .
= 5 J’[. mOk(gOO - fv, ) + ekAuvk] dt ; _ (58)

=
|

a_nd' the metric theory Maxwell equations read

'FaB,-B . (_- g)—1/2[F°B(- 8)1/2],6 g ? H . (‘593)
where ‘ ,.
7= Tk J‘_(dxka/dsk) Sh(f 3 }.fk) (- g)-1/2 ds,
- s (- 0726 - m) e e (590)

Here g = determinant of gOtB’ and commas and semicolons denote partial and

cbvariant: differentiation respectively. Combining Egs. (59) gives

[gaTgB”Fm(- 8_)1/2],6.'2 by eys” (x - 1) (dx/ae) - (e0)

-

Equations (60), when written out for the diagonal, spatially isotropic metric

of Eq. (57), have the "¢ - u" form of Egs. (2) and (3), with
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Ei = FOi , etc. ...

and
1/2

€ =YU- = (f/goo) (61)

Conversely, for a theory with GMM equations of the form of Egs. (2)-
(3) and with

e=p ' (62)
one can define an ”efféctiVé electromagnetic metric” by

8o = ¥ (63a)

il

. _
8 -€V¥Y B, 5 - (63b)

j R S

then the GMM_equétions.will take on metric-theory form. In Eqs. (63) v

is an arbitrarY"function and reflects the well-known conformal invariance
of Maxwell's equatidns; If, in addition to satisfying Eq. (62), the effeé-
tiQe metric detefmined by Eds. (63) is éorrectiy related to the functiorms
appear1ng in the particle Lagrangian [cf. Egs. (57)-(58)], then the entire
theory of partlcles and electromagnetic fields can be con31stent1y put into

metric form.

 IV. CONCLUSIONS AND APPLICATIONS

A. Theoretical Implications of the Results

‘ Wé Héve‘shown'that, in a spherically symmetric.graVitétional field, a
theory of gravity described by Egs. (1)-(4) can be put into metric form
: (with respect to the dyhamicalvequations for particles and electfomagnétic
fields) if and only if it satisfies the Weak Equivalence Principle. Eqﬁiva-

lently, if such a theory is nommetric then Eq. (21) will not be satisfied,
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the acceleration of test bodies will have body-dependent contributions
[cf. Eq. (17)], and WEP will be violated. The result has far reaching con-
»sequences 1f one accepts WEP as a valid principle Having proved, from WEP,
the metric nature of the GMM equations inside of an electromagnetic test
body, one knows how to describe all gravitational-electromagnetic
phenomena — e.g., the bending of light by the.sun, electromagnetic radiae
tion in a gravitational field, etc. | |
Therevare two potential weaknesses of our calculation. First werhave
assumed a spherically symmetric gravitational field. Now, it is.conceivable
thatba-theory could be of "metric form" for spherically synmetric gravitational
'fields, but nonmetric in other cases. Such theories would have to be analyzed '
on an individual basis, to see whether their non-SSS fields violated WEP.
: However, we feel that such a theory would be difficult to formulate and
in fact, have seen no examples in the literature. In practical applications,
one considers a particular nonmetric theory, solves the spherically symmetric
“problem, and finds that Eq. (21) is not satisfied, thus constituting a v1ola-
tion of WEP at some order. Examples Wlll be given below.
.A second possible weakness, discussed previously, is_the limitation to
_ the types of equation discussed in the beginning of Sec. TII. .However, except
for the Naida-Capella nonmetric theory, discussed below, Egs. (1)-(4) appear
to be quite general among "complete" theories. (There are many theories
which are not explicit as to the formulation of the GMM equations, and we
must require that such theories be completed before given further considera-
tion.) |
v Finally, we point out that WEP and Eq. (21) demand that the center of

mass acceleration be body independent at each order in the external gravitationaI'
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potential U. As will be seen below, a given theory violating the WEP will
do so at some order of U. To be more explicit, suppose that one expands

the functions H, T, p, € appearing in Eq. (17) in a power series in U, i.e.,

H= 1+ 2yU +-% 5U2 +oeee o, (6lha)
| 2
"T=1-20U+ 280" + ... , (64b)
€ = i + € ﬁ + € U2 + ' (th)
1 2 ...» ,
5 .
po=14pU+p U7+ (6Ld)

Then, Eq. (17) can be written in the form

s 1 S PO | -1 2
. <§cn> = -3 §(TO Hy ) - 5 8 M, <Zi,,k“ik> (1"0 + TyUq + TU 7+ ves)
a, -1 : . 2 4 - :
+ % _MQ <Zi,kft’1k> ('ro + 100+ T U + ced) (65)
where v ' ‘ .

Tg =7 =€ +2 ' (68a)
Ty =0 , | - (66b)

o _ 3 2 2

ry = E(E 5 -2 - &5 - B+ ey ) + 7€) + a(ul‘— 57 + € -a) , ° (esc)
T, = 2y + 2 - el.;_gl ’
‘ete. o | - (664d)

(For'thecorrecf Newtonian limit, one must require that a'= 1, but Qe leave
o arbi;rary here. ) Eagh theory will yield certain values for the I''s and
T's; We hévevéhown thafvnonmetric théories must have some of the I''s or
T's nOﬁzero-~the first.noﬁzero I or T determines the order at which the

theory violates WEP.
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B. Experimental Verification of WEP and Applications

" of Our Calculations

Thus far, our results havé been completely withih a theoretical context.
We now invéstigate the experimental and practical aﬁpiications.
'iﬁxperimental support_fgr WEP comes from the type of experiment devel-
' oped by Eotvos in the late nineteeﬁth century, and redesigne& extensively

by Dicke in the 196O's.16

. The particular Eotvos-Dicke (ED) éxperimgnts of
highest reported precision are the Princeton experiment of Réll, Krotkov,
and Dicke,16 andjthe Moscow experiment of Bfaginsky and Panov.17 These
experiments measure the relativé'acceleration toward the sun of two dif-
ferent SubStanceév(gold and éluminum in the Princeton experiment; platinum
;nd aluminum iﬁ‘the Mosccw experiﬁenﬁ). The reported results are

' |<§cﬁ>A1 - gcQ>Au' ‘<§cﬁ>A1 - <¥cm>Aul. . -11

. ~ < 10 . (67a)

Il &l

|<xcn>A1“- <§cn‘>Pt' < 10-—12 ' . : (67b)
[ ew|

OquCAICulation involved a test body dropped in a static field. Thé
following argument justifies direct comparison of our calculation with the
resuits of the ébqve experiments;

(i) Thé ak;éour‘compOnént 6f the acceleration can easily be isolated
8o that.the sun éan reall& be éonsidered as the sole external source of
.gravitation (see.page 173 of Ref. 16). To make fhis more clear, if one uses

the 24-hour period variation to select out g from g +g then

2sun Zsun earth’

Eq. (17) has body dependent terms of the form
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. . _1 ) .
E. >~ 8em Mo <>:i’ i [To + Tp(U i+ Ungp) + ee]

~

-1
~ 8sun Mo <zi,knié> [PO * T Usun ¥ wee ]

since Ugin ~ 10 Ueartn _

(ii) The fact that the earth is rotating rather than at rest can onlyl
béontribdte inertial accelerations; in particular no ;elative accelerations
between the twd test-bodies‘can be introduced in.this manner.

(iii) We have considefed only electromégnetic test bodies; but we wish
ﬁo apply our results.to the actual atoms used:invthe experiments, atoms which
have nucleér as well as electromagnetic interactions. Thus the compietev
edugtion fér.<2cﬂ>»for realistic atoms has, in addition to the terms:shown
in Eq. (17), terﬁs which involve nuclear energies. Is it possible that the
nuclear and eleqtroﬁéghetié terms would cancel each other? The énly mech-
anism by which éhe terms could bé combined aﬁd'related is through the viriél
relations; yet an éxaminé;ion of'Eq. (17) reveals that u0~does not even occur
bin the eleCtromagﬁe;ic portiqh éf the virial relations. In particular,
given the combined virial relations for both electromagnetic and nuclear
interactions one could construct an infinity of different theories merely
byichanging K (and thus changing the body dependent terms in <Xcﬁ>)' Thus
-there is no érediblé mechanism by which nuclear and electromagnetic body
dependeht terms Qould conspire to cancel each other. The "électromagnetic
violation' bf WEP thus constitutes a lower limit to the total'vioiation '
(éIIOWihg for poséible nuélear_violations).

We can now ask to what order does Eq. (87) test the oMM equations of

a theory. Equation (17) has the form
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3 electromagnetlc energy : - . 1
Eew §[ total mass | o0 o €0 Por Fo s To o )

+ body independent term (68)

'where F is a functlon of the 1nd1cated variables. ‘Now, the largest contri-
bution to the electromagnetic energy of the total atom certalnly comes from
the nuclear protons and for platinum or gold this amount to, using the

semiempirical mass formula,

N L ‘ . ,
[ (electromagnetic energy)/(total mass)]Pt or Ay~ 5 X lQ . (69a)
For aluminum, the corresponding quantity is
EM energy Al EM energy ~ 2 X% 10-3 (69b)
total mass|Al (Z h/S total mass |Pt )

Pt or Au

Noting that U, has the magnitude

0

U0 = potential of sun at earth ""10_-8

and using Eqs. (65) and (67), we see that current experimental accuracy

: : ' ' : 19
bears upon the Fk and Tk only for k = 1. The accuracy of the experiment

must go up by a factor of 1O7 to require that Ty and T2 vanish!! Equations

(66) show that the experiment thus measures H, T, and ¢ to O(Ug), but p
only to 0(U). ‘We expect that almost all theories will do well enongh to
have FO'E 0. | | |

Before continuing with difeet applicetions to theofies of the current
experimental verification'of WEP, 1et‘us return to Eq. (17) and analyze the
spec1f1c way in which it constrains the GMM eqnatlons of a grav1tat10n theory.

_The second body dependent term in Eq. (17) — the "directional Coulomb energy"

term-— involvesvthe GMM equations only through the product ¢u. This particular
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¢

product is also equal to thelSquare of the index of refraction, n?, and is
tested by light bending and time delay ekperiments (see,.e.g., Ref. 20 for

a discussion of these exﬁefiments-— altﬁough in the context of metric theories).
In fact, exploitiﬁg-thg e - u”-analogy for the GMM equations and taking the
géometrical opticé liﬁit, one sees that the current experimental tests, wi;h
thé exception of WEP, érevsensitive only to the product ep — and only to first -
order in U of - that quaﬁtity. On tﬁe.other hand# the first body dependent

term in Eq. (17)l— the "nondirectional Coulomb energy" term — sémples the

GMM equations in-a.deeper manner, both qualitatively aﬁd quantitatively.

Not onlyﬂis € distinguished froﬁ 1 (magﬁetic and electric effects distinf
guisﬁed).but also is ¢ explored to second order in U (cf. the eo') for the
currént experimental verification of WEP. Thus WEP is revealed as a power-

ful tqol fof pfqﬁing the GMM éduafions-— the most semsitive probe of those

' eqﬁations existing in 1973.

On purely Eheofetical grounds one can require, as we.havé previously
remarked, that the I''s and T's vanish indepéndently.:rHowever; in practical
experimental appiications, the secon& body dependent vector in Eq. (65) has
some particular.felation to the.first for any giﬁen experiment. Since the

nuclei of the atoms in the ED experiment are approximately spherical,

A 1 ‘ , '
<& i ~ 3 8 1 (70)

Using Egs. (65)-(70), one finally obtains, for @ = 1 (correct Newtonian
limit) |
LGS, -
~ : N ’ - - 1 '
°“>Pt"°‘“ °“’>A_1 ~ - 3% 10 3[1‘0 + 10 8(I‘1_ - %‘T1)_l . (71)

g .

~
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.C. Applications to Specific Nonmetric Theories

 In this section we discuss WEP for three particular nommetric theories.
The Belinfante-Swihart and Whitehead theories have equations of the férm of
Egs. (1)-(3). As an illustration of the formalism of Sec. IV.A and IV.B,.
the WEP violatibn‘is calculated ekblicitly in thé case of the Belinfanté—
Swihart theory.f'The Naida-Cépe11a~theory,iwhich is an apparently rare .
e#ample of.g theory not having a particle Lagrangian.of the form of Eq. (1)
in the SSS limit, is treated on an individual basis, using the techniques
developed in Secs. II and III.

1. Belinfante-Swihart Theoryh’6

An analysis of the Belinfante-Swihart theory in Ref. 14 reveals that

its particle Lagrangian can be put into metric form with

gop = (1 - .Kh)2|:qa8+ hog s g b, by, T+ O(hs)] | o (72)

where K is an arbitrary coanstant, h qQBh , -and nOB is the Minkowski metric.

‘The GMM equations are of "¢ - p" form.[i.e., have the form of Egs. (2)-(3)],

with, in the SSS limit,

1 a0 E
€ [1 —-§(hoo + hll) | (73a)

1

. 1 ] , :
[1 + E(hOO + hll) . (73b)

In the SSS liﬁit; hﬁv has the form

hyo = €U, " (7ha)
h1J = aijClU , (7h4b) .
hOk =0 , (7)‘“:)
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where CO’ C1 are arbitrary constants,'but with the implicit relation
21<(3»c1 - co) +GCy-2=0 | (75)
in order to satisfy the Newtonian limit (goo =-1+20+ ...). Defining

T and H by comparison of Egs. (72), (74) with Eqs. (24) and then evaluating

the various Ty and T, [cf. Eqs. (64) and (66)], one finds

T‘o =0 , | - (78a)

=
|

1 1 | '
1-3T=-3 Co(cof* ¢,) #0 | (76b)

Th order. to predict an amount of light bending and perihelion shift com-

patible with experiment, one must require that Co and C, satisfy

L _ |
.9 5—2-(00 +Cy - 2) =1.1 (77a)

(C +1) =13 . ()

The éombinations of o and Cy éccurring in Eqs. (77a) and (77b) correspond
to the % and B ﬁarameters, respectively, of the "PPN formalism”20 aﬁd the
experimental limits indicéted above are discussed in Ref. 20.

Using Egs. (71) and (77), we find that the nommetric theory of Belinfante

and Swihart predicts

b w 10°M < Zewhu or Pt " Q%::?M 10

I &

<1x 10

(78)

If one requires the_light bending and perihelion shift predictions of the
Belinfante-Swihart theory to be same as in general relativity, Eq. (78).

becomes -
11

. <gcé>Au or Pt <g;ﬁ>ﬁ1

~ 6 % 10 (79)

29



Thus, the Belinfante-Swihart theory violates seriously both the Princeton

and the Moscow versions of the ED experiment.

2. Whitehead's Theorys-

Synge analyzes only the motion of uncharged particles and the source-

less GMM equations in Whitehead's theory:

8 I (gadeade)l/g =0 | [Eq. (1.7) of Ref. 8] (80a)
(goungFuv)’B =0 | [Eq. (1.9) of Ref.:8] (80b)
"F_ 4+ F + F -0 [Eq. (1.9) of Ref. 8] . (80c)

05617 By)a . 7a,B

A straightforward generalization of these equations to include sources shows

that the GMM equations have "¢ - p'" form in the SSS limit, with

(- goof)-i. ’ o (e

B= £ : L . (81b) .

m
1l

[in the notation of Egs. (57)].  Using Eqs. (17); (57), and (81) one can

then show that

<~cn'>Au or Pt <~C§>A1 ~ 1073 __q_[g'n(-- goofs)] s ‘ (82) ’
<¥ca> S

qu

s0 thét, for experimentally accgptable values of 800 and fS, this version of
Whitehead's theory viqlates WEP at the ordef of 10'3! [ Note that in Whitehead's
theory the product eu ié the same as. in metric theories, so that the coeffi-
cient of the second body dependent tefm in Eq. (17) vanishes identically. 1In
some sense one can say that, with respect to the light bending and radar time

delay experiments, Whitehead's theory is a metric theory. ]
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3. Naida-Capellé Theory

The nonmetric theory of.Capella7 as completed by Naida8 has_the follow-

~ ing Lagrangian [cf. Eq..(2.1) of Ref. 7]:

1, asue o o ov-1/2| - :
L= m, Ids[- (g2 4 g (™) /] e [aad  (e3)

where Nog is the Minkowski metric and

ds = (T]%dxadxa)l/e .’
x = (12,

it

u® (dxayds) .

The GMM equations are of 'e - u" form [cf; Eq. (3.7) of Ref. 7] with

M
It

1+ x(hdég-rhu) N

H =.[i - x(hoo;+ hll)]‘1 . | (84b)

Solutions to the SS8 gravitational field equations yield

L s ' ~ (85a)

it

hoo = CoX

1

]

X Uai; , ‘ (85b)

h, .
13- J

wherelco and C, are arbitrary constants. Variation of Eq. (83) and use of

~ Egs. (85) gives the particle equation of motion [analogue of Eq. (29)]

! 2 ) 2 .2
a, = g[éo 'ACo(Co + ecl) Uy + Cyvie = Ug¥y (2coc1 + Gy + ecljJ

- ggl(z - g) Co +»c1 -v.ecl(co + Ci)Uo + ~.é.[1 - U(cO + 2c1?] . (86)

_Using Egs. (84)-(86), the GMM equations give
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»Lé(g)—(m) (1-cuo+cu)zkeek|1kl Xk

1 -1
. +-§ (m. )" [91 - UO(QC - C C )] g Zk nlk

-%(ml) (¢, +c-u(2c + o0y By wyye

-1 ) -3

.w;th C = CO + Cl'

Using the same center of mass formula as given in Egs. (7)-(9) and the

virial'theorem o

<1 01(" )% (v )B %[1 - Uy(30; +200)1 55 peye(xy) (xlk)B[x | 3)— 0 + o(g) (88)

one finally obtains

' - 1. -1, 2 2
ZEoo=8Cll+ Ugl-2C1+Co)1 - 5 My 7 (Cy + 3C; )Uo§<zi,kn_ik>
-11,3 2 _ 2 |
+ Mg 545 € - 50T - Gy - BCCy UG K8y gy (89)

Now,' with Eqs. (69)-(71) we get

X <X |
'<“°“‘>Pt or lglll ,<”°“>A1| ~ 10 3c, - 19c12 - 5002 - 8c,C,) (90)

The correct Newtonian and light bending results require, respectively:

c.=1, (91a)
Lic. v+ 1) <11 o
~ 56y ) S 1. . (91b)

Equations (90) and (91) indicate then the relation
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10 _ | Eewdhu or 2t '-<XCQ>A1 <} x 10710

2x 10 = :
Eew

.4 (92)

Thus the Naida-Capella nommetric theory seriously violates both the

Princeton and Moscow versions of the ED experiment.
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